Insights into the writing process of the mask-free nanoprinting fluid force microscopy technology

Author:

Soter MarcusORCID,Apte GurunathORCID,Madkatte Dikshita,Nguyen Thi-HuongORCID

Abstract

Abstract Platelets are activated immediately when contacting with non-physiological surfaces. Minimization of surface-induced platelet activation is important not only for platelet storage but also for other blood-contacting devices and implants. Chemical surface modification tunes the response of cells to contacting surfaces, but it requires a long process involving many regulatory challenges to transfer into a marketable product. Biophysical modification overcomes these limitations by modifying only the surface topography of already approved materials. The available large and random structures on platelet storage bags do not cause a significant impact on platelets because of their smallest size (only 1–3 μm) compared to other cells. We have recently demonstrated the feasibility of the mask-free nanoprint fluid force microscope (FluidFM) technology for writing dot-grid and hexanol structures. Here, we demonstrated that the technique allows the fabrication of nanostructures of varying features including grid, circle, triangle, and Pacman-like structures. Characteristics of nanostructures including height, width, and cross-line were analyzed and compared using atomic force microscopy imaging. Based on the results, we identified several technical issues, such as the printing direction and shape of structures that directly altered nanofeatures during printing. Importantly, both geometry and interspace governed the degree of platelet adhesion, especially, the structures with triangular shapes and small interspaces prevent platelet adhesion better than others. We confirmed that FluidFM is a powerful technique to precisely fabricate a variety of desired nanostructures for the development of platelet/blood-contacting devices if technical issues during printing are well controlled.

Funder

Thüringer Ministerium für Wirtschaft, Wissenschaft and Digitale Gesellschaft, TMWWDG, Germany

German Research Foundation

Publisher

IOP Publishing

Reference34 articles.

1. Platelet storage and functional integrity;Vit;J. Lab. Med.,2020

2. Blood safety and availability;WHO

3. Just chill-it’s worth it!;Cap;Transfusion,2017

4. The regulation of megakaryocyte and platelet production;Mcdonald;Int. J. Cell Cloning,1989

5. Response of human blood platelets on nanoscale groove patterns: implications for platelet storage;Bui;ACS Appl. Nano Mater.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3