Local fusion generative adversarial network with dual-discriminator and parallel multipath and its application in machinery fault diagnosis with imbalanced data

Author:

Ju MiaoORCID,Ding ChuancangORCID,Huang WeiguoORCID,Zhu ZhongkuiORCID,Shen ChangqingORCID,Shi JuanjuanORCID

Abstract

Abstract Diagnosing faults in critical machinery components is imperative for effective condition monitoring and real-world datasets often suffer from data imbalance. To address this issue, numerous data generation methods have been developed, such as improved local fusion generative adversarial network (ILoFGAN), variational autoencoding GAN (VAEGAN), etc. However, the existing data generation methods primarily concentrate on global and single-scale features and often ignore local or multi-scale features, which leads to the omission of key features or nuances in the generated data. Therefore, a novel approach called the local fusion generative adversarial network with dual-discriminator and parallel multipath (LoFGAN-DP) is designed to enhance the fault diagnosis performance in the context of imbalanced data. The LoFGAN-DP features a parallel multi-path (PMP) module along with a dual-discriminator scheme, in which the multipath module facilitates feature extraction at various scales through convolution across paths of diverse sizes, and the dual-discriminator scheme can better improve the quality and diversity of the samples generated by the generator. The PMP module and dual-discriminator scheme enhance the proposed method’s robustness against variations in input data. After generating data by LoFGAN-DP, a two-dimensional capsule network is further used to achieve the efficient recognition of fault features. To validate the proposed LoFGAN-DP in the machinery fault diagnosis with imbalanced data, the gear dataset and the self-constructed bearing dataset were utilized. Experimental results show that LoFGAN-DP significantly improves structural similarity index, Fréchet inception distance, and fault classification accuracy compared to several advanced methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3