3D total variation denoising in X-CT imaging applied to pore extraction in additively manufactured parts

Author:

Heylen RobORCID,Thanki AditiORCID,Verhees DriesORCID,Iuso DomenicoORCID,De Beenhouwer JanORCID,Sijbers JanORCID,Witvrouw AnnORCID,Haitjema HanORCID,Bey-Temsamani AbdellatifORCID

Abstract

Abstract X-ray computed tomography (X-CT) plays an important role in non-destructive quality inspection and process evaluation in metal additive manufacturing, as several types of defects such as keyhole and lack of fusion pores can be observed in these 3D images as local changes in material density. Segmentation of these defects often relies on threshold methods applied to the reconstructed attenuation values of the 3D image voxels. However, the segmentation accuracy is affected by unavoidable X-CT reconstruction features such as partial volume effects, voxel noise and imaging artefacts. These effects create false positives, difficulties in threshold value selection and unclear or jagged defect edges. In this paper, we present a new X-CT defect segmentation method based on preprocessing the X-CT image with a 3D total variation denoising method. By comparing the changes in the histogram, threshold selection can be significantly better, and the resulting segmentation is of much higher quality. We derive the optimal algorithm parameter settings and demonstrate robustness for deviating settings. The technique is presented on simulated data sets, compared between low- and high-quality X-CT scans, and evaluated with optical microscopy after destructive tests.

Funder

VLAIO

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3