Abstract
Abstract
X-ray computed tomography (X-CT) plays an important role in non-destructive quality inspection and process evaluation in metal additive manufacturing, as several types of defects such as keyhole and lack of fusion pores can be observed in these 3D images as local changes in material density. Segmentation of these defects often relies on threshold methods applied to the reconstructed attenuation values of the 3D image voxels. However, the segmentation accuracy is affected by unavoidable X-CT reconstruction features such as partial volume effects, voxel noise and imaging artefacts. These effects create false positives, difficulties in threshold value selection and unclear or jagged defect edges. In this paper, we present a new X-CT defect segmentation method based on preprocessing the X-CT image with a 3D total variation denoising method. By comparing the changes in the histogram, threshold selection can be significantly better, and the resulting segmentation is of much higher quality. We derive the optimal algorithm parameter settings and demonstrate robustness for deviating settings. The technique is presented on simulated data sets, compared between low- and high-quality X-CT scans, and evaluated with optical microscopy after destructive tests.
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献