Sub-wavelength focusing for low-frequency sound sources using an iterative time reversal method

Author:

Li Yuanwen,Li MinORCID,Pan Wei,Feng Daofang,Yang Debin

Abstract

Abstract Microphone array measurements processed with imaging algorithms are commonly performed to identify and quantify noise sources in machines, which is the premise of noise control. However, due to the limitations of the half-wavelength theory, beamforming and time reversal (TR) methods cannot effectively separate multiple low-frequency sources. Although near-field acoustic holography can overcome the diffraction limit, it will encounter an ill-posed problem. To avoid solving the inverse problem, iterative TR processing (iterative-TR) is proposed to obtain the sub-wavelength focusing and improve the spatial resolution at low frequency. The focusing result is corrected step by step with iteration implemented until it reaches the convergence threshold. The propagation matrix between microphones and focusing points is reconstructed by singular-value normalization to ensure the convergence of the iteration. Numerical simulation results show that the iterative-TR method is able to break through the diffraction limit below 1000 Hz within a measurement distance of 0.5 m and reach convergence within 105 iterations, which is less than 10 s. The experimental results indoors with significant reverberation show that iterative-TR has the ability to stably give the multiple source positions with 0.11 m spacing even at 100 Hz, that is, the spatial resolution reaches 1/31 wavelength. Detailed analysis shows that the overall performance of iterative-TR outperforms other methods capable of sub-wavelength focusing for signals below 1000 Hz. The identification of two loudspeakers in a car shows the practicality of the proposed method.

Funder

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3