Pipeline leak location method based on SSA-VMD with generalized quadratic cross-correlation*

Author:

Peng Laihu,Hu YongchaoORCID,Zhang JianyiORCID,Lin Jianwei

Abstract

Abstract Natural gas pipelines are an essential part of the economy. Natural gas pipelines may leak after aging, strong vibration signals may be generated in the pipeline when leakage occurs, and vibration signals may be noisy. Traditional variational mode decomposition (VMD) noise reduction methods need to set parameters in advance, and so may not achieve the best decomposition effect. To solve this problem, this paper proposes a method for pipeline leakage location based on the sparrow search algorithm (SSA) optimization of VMD combined with generalized quadratic cross-correlation. The method first calculates the original signal-to-noise ratio (SNR), and if the SNR is low, wavelet threshold denoising is used to process the signal. Then, SSA optimization is used to refine the two key parameters of VMD (penalty parameter α and mode decomposition number K) based on sample entropy. Subsequently, the signal undergoes decomposition into K intrinsic mode function (IMF) components through VMD according to the obtained analysis parameter combination. Then, the IMF components are screened to obtain the reconstructed signal. Finally, the noise reduction signal is obtained. The signal delay after noise reduction is obtained through a generalized quadratic cross-correlation and the accurate leakage position is obtained using the delay. Experiments showed that the minimum relative error of this method could reach 0.6%, which was more accurate than the traditional VMD method, and effectively improved the accuracy of noisy signals in pipeline leakage locations.

Funder

Key Research and Development Program of Zhejiang Province

Zhejiang Provincial Ten Thousand Plan for Young Top Talents

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3