Blind cyclostationary fault feature extraction in rolling bearings: a dual adaptive filtering approach

Author:

Sun Ruo-BinORCID,Su YufengORCID,Yang Zhi-BoORCID,Chen XuefengORCID

Abstract

Abstract Extracting cyclostationary features from vibration signals is one of the most effective approaches in bearing fault diagnosis. However, current methods require prior knowledge of cycle-frequencies or other statistical information, which constrains their applicability across various scenarios. In this paper, we introduce a novel dual adaptive filtering method, incorporating cycle-frequency estimation to solve the existing problem. The method firstly employs an adaptive line enhancer (ALE) to isolate the first-order cyclostationary signal, thereby the cycle-frequencies can be effectively detected using an exhaustive estimation technique. Subsequently, an adaptive frequency-shift (FRESH) filter is further applied to extract the second-order cyclostationary features from the residual components. The proposed method successfully overcomes the challenge of separating cyclostationary signals without prior knowledge and can be tailored to real-time application scenarios. Besides, the approach distinguishes between the two cyclostationary signal types, effectively resolving any aliasing concerns inherent in their statistical characteristics. The effectiveness of the method is verified through simulation, experiments, and engineering data analysis. It is demonstrated that the method significantly enhances diagnostic accuracy and is more suitable for early fault diagnosis of rolling bearings by estimating spectral coherence on the extracted signals.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3