Crack identification method for magnetic particle inspection of bearing rings based on improved Yolov5

Author:

Yang Yun,Zuo JinzhaoORCID,Li Long,Wang Xianghai,Yin Zijian,Ding Xingyun

Abstract

Abstract The fluorescent magnetic particle inspection technique is often used for surface crack detection of bearing rings due to its advantages of simple operation and high sensitivity. With the development of computer vision technology, more and more visual algorithms are used in magnetic particle inspection for defect detection. However, most of these current algorithm models have low detection accuracy and poor efficiency, making it difficult to meet the precision requirements of production testing and affecting the overall pace of production processes. To address this problem, this paper proposes an improved algorithm model based on Yolov5. Firstly, MobileNetV3-small is utilized to construct the backbone feature extraction network, reducing the network’s parameter count and enhancing its detection speed. In addition, Bidirectional Feature Pyramid Network is implemented to facilitate swift and efficient multi-scale feature fusion, while the C3 module in the neck is replaced with C2f to enhance detection precision. Finally, Focal-Loss EIoU is adopted as the loss function to improve the model’s accuracy in positioning the crack borders. Experimental results demonstrate that the precision of this model in detecting surface cracks in bearing rings achieves an impressive 95.1%, while the recall reaches 90.4%. The mAP stands at 0.946. When compared to the original Yolov5s network, this model showcases a reduction in network parameters by 32.1% and a significant increase in frames per second by 40.0%. These improvements effectively fulfill the production process’s demands for crack detection tasks, providing a balance between accuracy and efficiency.

Funder

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3