Iterative feature mode decomposition: a novel adaptive denoising method for mechanical fault diagnosis

Author:

Ruan XiaolongORCID,Yuan RuiORCID,Dang ZhangORCID,Lv YongORCID,Jing XiaolongORCID

Abstract

Abstract Remaining useful life prediction of rolling bearings highly relies on feature extraction of signals. The use of denoising algorithms helps to better eliminate noise and extract features, thereby constructing health indicators to predict remaining useful life. This paper proposes a novel adaptive denoising method based on iterative feature mode decomposition (IFMD) to accurately and efficiently extract fault features. The feature mode decomposition (FMD) employs correlation kurtosis (CK) as the objective function for iterative filter bank updates, enabling rapid identification of fault features. To achieve IFMD, the sparrow search algorithm combines sine-cosine algorithm and cauchy variation (SCSSA) to optimize two key parameters in FMD. During the continuous iteration process of the SCSSA algorithm, filter length and number of modes were determined. IFMD does not require empirical setting of initial parameters. During iterative process, the signal is accurately decomposed and the noise is eliminated. Compared with other optimization algorithms, SCSSA has obvious advantages in iterative rate and global optimization. The envelope spectrum feature energy ratio (ES-FER) is used to select decomposed modes, and the mode with the largest ES-FER is chosen as the optimal mode. Bearing fault diagnosis is realized by envelope spectrum analysis of the optimal mode. The numerical simulations and experimental verifications both validate the effectiveness and superiority of the proposed IFMD in mechanical fault diagnosis.

Funder

National Natural Science Foundation of China

Wuhan Key Research and Development Plan Artificial Intelligence Innovation Special Program

Hubei Provincial Natural Science Foundation Youth Program, Innovation Group Program, and Innovation Development Joint Key Program

14th Five Year Plan Hubei Provincial Advantaged Characteristic Disciplines (Groups) Project of Wuhan University of Science and Technology

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3