Multi-step intelligent prediction of shield machine position attitude on the basis of BWO-CNN-LSTM-GRU

Author:

Liu Xuanyu,Zhang WenshuaiORCID,Mengting Jiang,Wang Yudong,Ma Lili

Abstract

Abstract Realizing automatic control of shield machine tunneling attitude is a challenging problem. Realizing multi-step intelligent prediction for attitude and position is an important prerequisite for solving this problem in the tunneling process with complex and varied geological environments. In this paper, a multi-step intelligent predictive scheme based on beluga whale optimization-convolutional neural network-Long Short-term memory-gated recurrent unit (BWO-CNN-LSTM-GRU) is proposed for shield machine position attitude. First, Pearson correlation analysis is utilized to determine the input feature variables from the construction data and temporalize the input features. Subsequently, CNN-LSTM-GRU predictive models are established for the six positional parameters, separately. Among them, CNN performs feature extraction on the input variables, and LSTM-GRU realizes the predictions for the target positional parameters. In the end, the optimization of the convolutional layer dimension, the number of convolutional layers, iterations, the learning rate, the number of neurons in the LSTM layer and GRU layer of each position predictive model is performed on the basis of BWO, separately, and the best hyperparameters found are built into a BWO-CNN-LSTM-GRU position predictive model, which realizes the multi-step intelligent predictions for the shield machine’s position. The proposed approach is examined by utilizing the Beijing Metro Line 10. The results show that the predictive deviation of the position predictive model is within 3 mm, and the positional trajectory points obtained on the basis of the predicted values and the 3D coordinate system are highly coincident with the actual trajectory points. Therefore, the approach provides a more accurate predictive result for shield attitude and position and can provide a decision-making scheme for further realizing the coordinated autonomous control of shield machine.

Funder

The Basic Scientific Research Program of The Educational Department of Liaoning Province of China—General Program

Scientific Research Fund Program of The Educational Department of Liaoning Province of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3