A new dual-channel convolutional neural network and its application in rolling bearing fault diagnosis

Author:

Hu BaoquanORCID,Liu JunORCID,Zhao RongzhenORCID,Xu YueORCID,Huo TianlongORCID

Abstract

Abstract Recently, deep learning has received widespread attention in the field of bearing fault diagnosis due to its powerful feature learning capability. However, when the actual working conditions are complex and variable, the fault information in a single domain is limited, making it difficult to achieve high accuracy. To overcome these challenges, this paper proposes a bearing fault diagnosis method based on the Markov transition field, continuous wavelet transform (CWT), and dual-channel convolutional neural network (CNN). The method combines the descriptive ability of the Markov model for state transfer, the time-frequency analysis ability of CWT for signal, and the excellent performance of CNN with attention mechanism in feature extraction and classification. Specifically, we first propose a multi-channel Markov transition field method, which is combined with CWT to obtain two different representations of two-dimensional (2D) images. To comprehensively mine fault information, we further propose a dual-channel CNN with an attention mechanism. The design of this network structure aims to extract multi-level features from two types of 2D images. At the same time, we designed and embedded an attention mechanism to enable the network to focus more on extracting effective features, thereby improving the performance and accuracy of the network. To verify the effectiveness of the proposed method, three datasets were used for empirical research. The results show that this method exhibits superior performance in bearing fault diagnosis and has higher accuracy compared to traditional methods.

Funder

Hongliu First-class Disciplines Development Program of Lanzhou University of Technology

Research and Development Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3