An improved hidden Markov model with magnetic Barkhausen noise and optimized Gaussian mixture feature for fatigue prediction

Author:

Li XiangORCID,Guo WeiORCID,Deng Xin,Guo Yitong,Zheng Yang,Zhou JinjieORCID,Zhan Peng

Abstract

Abstract Evaluating fatigue states of metallic materials is essential for predicting their failures and ensuring structural safety. Magnetic Barkhausen noise (MBN) analysis, a non-destructive testing method, provides efficient and reliable methods for identifying and categorising material parameters such as hardness and residual stresses. To establish a quantitative relationship between MBN signals and fatigue states, an improved hidden Markov model (HMM) is proposed based on optimised Gaussian mixture features (GMFs) and the Kullback–Leibler (KL) divergence measure for fatigue prediction. The MBN-GMFs replicate the probability characteristics of MBN signals and track the fatigue degradation trend throughout the fatigue life; thus, they are superior to some widely used statistical features. A Gaussian component optimisation algorithm is proposed to automatically adjust the appropriate number of components in the Gaussian mixture model and enhance the representation of MBN-GMFs. Then, the KL divergence is introduced to quantify the similarity and accurately classify the degree of MBN-GMF migration. The HMM is constructed to obtain the probability transfer relationship between the observations and states and obtain accurate fatigue predictions. Experiments on two 20R metallic materials at three excitation frequencies are conducted to collect the MBN signals. The experimental results and comparisons indicate that the proposed HMM can accurately predict fatigue states and provide a practical and robust analysis tool for MBN-based fatigue predictions.

Funder

Research and Development Program of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3