Incipient fault detection based on ensemble learning and distribution dissimilarity analysis in multi-feature processes

Author:

Liu Meizhi,Kong XiangyuORCID,Luo Jiayu,Yang Lei

Abstract

Abstract Timely and accurate detection of incipient faults has attracted considerable attention and research interest in recent years, due to its potential for the prevention of serious safety incidents and for supporting preventive maintenance. However, most existing methods use single detection model, neglecting the coexistence of multiple features and the local data distribution information found in industrial scenes. To overcome this problem, an incipient fault detection method named multiple model ensemble and distribution dissimilarity analysis (MME-DISSIM) is proposed. First, various multivariate statistical analysis methods are employed as basic detectors to comprehensively capture the feature information hidden in the process data. Second, DISSIM analysis is performed to evaluate the dissimilarity between the current sliding window and each training subset. This evaluation allows for the calculation of weighting factors for each basic detector, which helps to preserve the local distribution information of the current sliding window. Third, ensemble learning is utilized to integrate the statistics from all basic detectors into two detection indices to determine the operation status of the system. In addition, two measurement metrics are defined to quantitatively analyze the fault level of incipient faults. Finally, several experiments on a numerical case, Tennessee Eastman process, and actual PROcess NeTwork Optimization are presented to verify the efficacy and superiority of the proposed method.

Funder

Scientific Innovation Foundation of the Higher Education Institutions of Shanxi Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3