Patient-independent seizure detection based on long-term iEEG and a novel lightweight CNN

Author:

Si XiaopengORCID,Yang ZhuobinORCID,Zhang Xingjian,Sun YulinORCID,Jin Weipeng,Wang Le,Yin Shaoya,Ming Dong

Abstract

Abstract Objective. Patient-dependent seizure detection based on intracranial electroencephalography (iEEG) has made significant progress. However, due to the difference in the locations and number of iEEG electrodes used for each patient, patient-independent seizure detection based on iEEG has not been carried out. Additionally, current seizure detection algorithms based on deep learning have outperformed traditional machine learning algorithms in many performance metrics. However, they still have shortcomings of large memory footprints and slow inference speed. Approach. To solve the above problems of the current study, we propose a novel lightweight convolutional neural network model combining the Convolutional Block Attention Module (CBAM). Its performance for patient-independent seizure detection is evaluated on two long-term continuous iEEG datasets: SWEC-ETHZ and TJU-HH. Finally, we reproduce four other patient-independent methods to compare with our method and calculate the memory footprints and inference speed for all methods. Main results. Our method achieves 83.81% sensitivity (SEN) and 85.4% specificity (SPE) on the SWEC-ETHZ dataset and 86.63% SEN and 92.21% SPE on the TJU-HH dataset. In particular, it takes only 11 ms to infer 10 min iEEG (128 channels), and its memory footprint is only 22 kB. Compared to baseline methods, our method not only achieves better patient-independent seizure detection performance but also has a smaller memory footprint and faster inference speed. Significance. To our knowledge, this is the first iEEG-based patient-independent seizure detection study. This facilitates the application of seizure detection algorithms to the future clinic.

Funder

National Key Research and Development Program of China

Key Project & Team Program of Tianjin City

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Landscape of epilepsy research: Analysis and future trajectory;Interdisciplinary Neurosurgery;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3