The value–complexity trade-off for reinforcement learning based brain–computer interfaces

Author:

Levi-Aharoni HadarORCID,Tishby Naftali

Abstract

Abstract Objective. One of the recent developments in the field of brain–computer interfaces (BCI) is the reinforcement learning (RL) based BCI paradigm, which uses neural error responses as the reward feedback on the agent’s action. While having several advantages over motor imagery based BCI, the reliability of RL-BCI is critically dependent on the decoding accuracy of noisy neural error signals. A principled method is needed to optimally handle this inherent noise under general conditions. Approach. By determining a trade-off between the expected value and the informational cost of policies, the info-RL (IRL) algorithm provides optimal low-complexity policies, which are robust under noisy reward conditions and achieve the maximal obtainable value. In this work we utilize the IRL algorithm to characterize the maximal obtainable value under different noise levels, which in turn is used to extract the optimal robust policy for each noise level. Main results. Our simulation results of a setting with Gaussian noise show that the complexity level of the optimal policy is dependent on the reward magnitude but not on the reward variance, whereas the variance determines whether a lower complexity solution is favorable or not. We show how this analysis can be utilized to select optimal robust policies for an RL-BCI and demonstrate its use on EEG data. Significance. We propose here a principled method to determine the optimal policy complexity of an RL problem with a noisy reward, which we argue is particularly useful for RL-based BCI paradigms. This framework may be used to minimize initial training time and allow for a more dynamic and robust shared control between the agent and the operator under different conditions.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3