Abstract
Abstract
Objective. We propose a novel method to estimate the instantaneous oscillatory phase to implement a real-time system for state-informed sensory stimulation in electroencephalography (EEG) experiments. Approach. The method uses Kalman filter-based prediction to estimate current and future EEG signals. We tested the performance of our method in a real-time situation. Main results. Our method showed higher accuracy in predicting the EEG phase than the conventional autoregressive (AR) model-based method. Significance. A Kalman filter allows us to easily estimate the instantaneous phase of EEG oscillations based on the automatically estimated AR model implemented in a real-time signal processing machine. The proposed method has a potential for versatile applications targeting the modulation of EEG phase dynamics and the plasticity of brain networks in relation to perceptual or cognitive functions.
Funder
RIKEN
Toyota Motor Corporation
Japan Society for the Promotion of Science
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献