Skilled independent control of individual motor units via a non-invasive neuromuscular–machine interface

Author:

Formento EmanueleORCID,Botros PaulORCID,Carmena Jose M

Abstract

Abstract Objective. Brain–machine interfaces (BMIs) have the potential to augment human functions and restore independence in people with disabilities, yet a compromise between non-invasiveness and performance limits their relevance. Approach. Here, we hypothesized that a non-invasive neuromuscular–machine interface providing real-time neurofeedback of individual motor units within a muscle could enable independent motor unit control to an extent suitable for high-performance BMI applications. Main results. Over 6 days of training, eight participants progressively learned to skillfully and independently control three biceps brachii motor units to complete a 2D center-out task. We show that neurofeedback enabled motor unit activity that largely violated recruitment constraints observed during ramp-and-hold isometric contractions thought to limit individual motor unit controllability. Finally, participants demonstrated the suitability of individual motor units for powering general applications through a spelling task. Significance. These results illustrate the flexibility of the sensorimotor system and highlight individual motor units as a promising source of control for BMI applications.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3