The temporal pattern of intracortical microstimulation pulses elicits distinct temporal and spatial recruitment of cortical neuropil and neurons

Author:

Eles James R,Stieger Kevin C,Kozai Takashi D YORCID

Abstract

Abstract Objective. The temporal spacing or distribution of stimulation pulses in therapeutic neurostimulation waveforms—referred to here as the Temporal Pattern (TP)—has emerged as an important parameter for tuning the response to deep-brain stimulation and intracortical microstimulation (ICMS). While it has long been assumed that modulating the TP of ICMS may be effective by altering the rate coding of the neural response, it is unclear how it alters the neural response at the network level. The present study is designed to elucidate the neural response to TP at the network level. Approach. We use in vivo two-photon imaging of mice expressing the calcium sensor Thy1-GCaMP or the glutamate sensor hSyn-iGluSnFr to examine the layer II/III neural response to ICMS with different TPs. We study the neuronal calcium and glutamate response to TPs with the same average frequency (10 Hz) and same total charge injection, but varying degrees of bursting. We also investigate one control pattern with an average frequency of 100 Hz and 10X the charge injection. Main Results. Stimulation trains with the same average frequency and same total charge injection but distinct TPs recruit distinct sets of neurons. More than half (60% of 309 cells) of neurons prefer one TP over the other. Despite their distinct spatial recruitment patterns, cells exhibit similar ability to follow 30 s trains of both TPs without failing, and they exhibit similar levels of glutamate release during stimulation. Both neuronal calcium and glutamate release entrain to the bursting TP pattern, with a ∼21-fold increase in relative power at the frequency of bursting. Bursting also results in a statistically significant elevation in the correlation between somatic calcium activity and neuropil activity, which we explore as a metric for inhibitory-excitatory tone. Interestingly, soma-neuropil correlation during the bursting pattern is a statistically significant predictor of cell preference for TP, which exposes a key link between TP and inhibitory-excitatory tone. Finally, using mesoscale imaging, we show that both TPs result in distal inhibition during stimulation, which reveals complex spatial and temporal interactions between TP and inhibitory-excitatory tone in ICMS. Significance. Our results may ultimately suggest that TP is a valuable parameter space to modulate inhibitory-excitatory tone and to recruit distinct network activity in ICMS. This presents a broader mechanism of action than rate coding, as previously thought. By implicating these additional mechanisms, TP may have broader utility in the clinic and should be pursued to expand the efficacy of ICMS therapies.

Funder

National Institute of Neurological Disorders and Stroke

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3