fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy

Author:

Nagasawa Tomoyuki,Sato Takanori,Nambu IsaoORCID,Wada Yasuhiro

Abstract

Abstract Objective. Functional near-infrared spectroscopy (fNIRS) is expected to be applied to brain–computer interface (BCI) technologies. Since lengthy fNIRS measurements are uncomfortable for participants, it is difficult to obtain enough data to train classification models; hence, the fNIRS-BCI accuracy decreases. Approach. In this study, to improve the fNIRS-BCI accuracy, we examined an fNIRS data augmentation method using Wasserstein generative adversarial networks (WGANs). Using fNIRS data during hand-grasping tasks, we evaluated whether the proposed data augmentation method could generate artificial fNIRS data and improve the classification performance using support vector machines and simple neural networks. Main results. Trial-averaged temporal profiles of WGAN-generated fNIRS data were similar to those of the measured data except that they contained an extra noise component. By augmenting the generated data to training data, the accuracies for classifying four different task types were improved irrespective of the classifiers. Significance. This result suggests that the artificial fNIRS data generated by the proposed data augmentation method is useful for improving BCI performance.

Funder

Nagaoka University of Technology

Japan Society for the Promotion of Science

The Nagai N-S Promotion for Science of Perception

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3