Analysis of the neural mechanism of spectra decrease in MCI by a thalamo-cortical coupled neural mass model

Author:

Cui DongORCID,Li Han,Liu Pengxiang,Gu Guanghua,Li XiaoliORCID,Wang Lei,Yin Shimin

Abstract

Abstract Objective. In order to deeply understand the neurophysiological mechanism of the spectra decrease in mild cognitive impairment (MCI), this paper studies a new neural mass model, which can simulate various intracerebral electrophysiological activities. Approach. In this study, a thalamo-cortical coupled neural mass model (TCC-NMM) is proposed. The influences of the coupling coefficients and other key parameters on the model spectra are simulated. Then, the unscented Kalman filter (UKF) algorithm is used to reversely identify the parameters in the TCC-NMM. Furthermore, the TCC-NMM and UKF are combined to analyze the spectra reduction mechanism of electroencephalogram (EEG) signals in MCI patients. The independent sample t-test is carried out to statistical analyze the differences of the identified parameters between MCI and normal controls. The Pearson correlation analysis is used to analyze the intrinsic relationship between parameters and the scores of the comprehensive competence assessment scale. Main results. The simulation results show that the decreased cortical synaptic connectivity constants C 1 can result in spectra decrease of the TCC-NMM outputs. The real EEG analysis results show that the identified values of parameter C 1 are significant lower in the MCI group than in control group in frontal and occipital areas and the parameters C 1 are positively correlated with the Montreal Cognitive Assessment (MoCA) scores in the two areas. This consistency suggests that the cortical synaptic connectivity loss from pyramidal cells to excitatory interneurons (eIN) may be one of the neural mechanisms of EEG spectra decrease in MCI. Significance. (a) In this study, a new mathematical model TCCNMM based on anatomy and neurophysiology is proposed. (b) All key parameters in TCC-NMM are studied in detail through the forward and reverse analysis and the influence of these parameters on the output spectra of the model is pointed out. (c) The possible neural mechanism of the decreased spectra in MCI patients is pointed out by the joint analysis of simulation in forward with TCC-NMM and analysis of the actual EEG signals in reverse with UKF identification algorithm. (d) We find that the identified parameter C1 of MCI patients is significantly lower than that of the control group, which is consistent with the simulation analysis of TCC-NMM. So, we suggest that the decreased MCI alpha power spectrum is likely related to the cortical synaptic connection loss from pyramidal cells to eIN.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3