Kinematics of individual muscle units in natural contractions measured in vivo using ultrafast ultrasound

Author:

Lubel Emma,Grandi Sgambato Bruno,Barsakcioglu Deren YORCID,Ibáñez JaimeORCID,Tang Meng-Xing,Farina DarioORCID

Abstract

Abstract Objective. The study of human neuromechanical control at the motor unit (MU) level has predominantly focussed on electrical activity and force generation, whilst the link between these, i.e. the muscle deformation, has not been widely studied. To address this gap, we analysed the kinematics of muscle units in natural contractions. Approach. We combined high-density surface electromyography (HDsEMG) and ultrafast ultrasound (US) recordings, at 1000 frames per second, from the tibialis anterior muscle to measure the motion of the muscular tissue caused by individual MU contractions. The MU discharge times were identified online by decomposition of the HDsEMG and provided as biofeedback to 12 subjects who were instructed to keep the MU active at the minimum discharge rate (9.8 ± 4.7 pulses per second; force less than 10% of the maximum). The series of discharge times were used to identify the velocity maps associated with 51 single muscle unit movements with high spatio-temporal precision, by a novel processing method on the concurrently recorded US images. From the individual MU velocity maps, we estimated the region of movement, the duration of the motion, the contraction time, and the excitation–contraction (E–C) coupling delay. Main results. Individual muscle unit motions could be reliably identified from the velocity maps in 10 out of 12 subjects. The duration of the motion, total contraction time, and E–C coupling were 17.9 ± 5.3 ms, 56.6 ± 8.4 ms, and 3.8 ± 3.0 ms (n = 390 across ten participants). The experimental measures also provided the first evidence of muscle unit twisting during voluntary contractions and MU territories with distinct split regions. Significance. The proposed method allows for the study of kinematics of individual MU twitches during natural contractions. The described measurements and characterisations open new avenues for the study of neuromechanics in healthy and pathological conditions.

Funder

Engineering and Physical Sciences Research Council

“la Caixa” Foundation

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3