Improving reaching with functional electrical stimulation by incorporating stiffness modulation

Author:

Johnson TylerORCID,Taylor DawnORCID

Abstract

Abstract Objective. Intracortical recordings have now been combined with functional electrical stimulation (FES) of arm/hand muscles to demonstrate restoration of upper-limb function after spinal cord injury. However, for each desired limb position decoded from the brain, there are multiple combinations of muscle stimulation levels that can produce that position. The objective of this simulation study is to explore how modulating the amount of coactivation of antagonist muscles during FES can impact reaching performance and energy usage. Stiffening the limb by cocontracting antagonist muscles makes the limb more resistant to perturbation. Minimizing cocontraction saves energy and reduces fatigue. Approach. Prior demonstrations of reaching via FES used a fixed empirically-derived lookup table for each joint that defined the muscle stimulation levels that would position the limb at the desired joint angle decoded from the brain at each timestep. This study expands on that previous work by using simulations to: (a) test the feasibility of controlling arm reaching using a suite of lookup tables with varying levels of cocontraction instead of a single fixed lookup table for each joint, (b) optimize a simple function for automatically switching between these different cocontraction tables using only the desired kinematic information already being decoded from the brain, and (c) compare energy savings and movement performance when using the optimized function to automatically modulate cocontraction during reaching versus using the best fixed level of cocontraction. Main results. Our data suggests energy usage and/or movement performance can be significantly improved by dynamically modulating limb stiffness using our multi-table method and a simple function that determines cocontraction level based on decoded endpoint speed and its derivative. Significance. By demonstrating how modulating cocontraction can reduce energy usage while maintaining or even improving movement performance, this study makes brain-controlled FES a more viable option for restoration of reaching after paralysis.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

U.S. Department of Veterans Affairs

National Institute of Neurological Disorders and Stroke

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3