Beta-band modulation in the human hippocampus during a conflict response task

Author:

Chen Kuang-Hsuan,Gogia Angad SORCID,Tang Austin MORCID,Del Campo-Vera Roberto Martin,Sebastian Rinu,Nune George,Wong JanelineORCID,Liu Charles Y,Kellis Spencer,Lee Brian

Abstract

Abstract Objective. Identify the role of beta-band (13–30 Hz) power modulation in the human hippocampus during conflict processing. Approach. We investigated changes in the spectral power of the beta band (13–30 Hz) as measured by depth electrode leads in the hippocampus during a modified Stroop task in six patients with medically refractory epilepsy. Previous work done with direct electrophysiological recordings in humans has shown hippocampal theta-band (3–8 Hz) modulation during conflict processing. Local field potentials sampled at 2 k Hz were used for analysis and a non-parametric cluster-permutation t-test was used to identify the time period and frequency ranges of significant power change during cue processing (i.e. post-stimulus, pre-response). Main results. In five of the six patients, we observe a statistically significant increase in hippocampal beta-band power during successful conflict processing in the incongruent trial condition (cluster-based correction for multiple comparisons, p < 0.05). There was no significant beta-band power change observed during the cue-processing period of the congruent condition in the hippocampus of these patients. Significance. The beta-power changes during conflict processing represented here are consistent with previous studies suggesting that the hippocampus plays a role in conflict processing, but it is the first time that the beta band has been shown to be involved in humans with direct electrophysiological evidence. We propose that beta-band modulation plays a role in successful conflict detection and automatic response inhibition in the human hippocampus as studied during a conflict response task.

Funder

Tianqiao and Chrissy Chen Brain-Machine Interface Center at Caltech

National Center for Advancing Translational Science (NCATS) of the U.S. National Institutes of Health

Taiwan-USC Postdoctoral Fellowship Program

Meira and Shaul G. Massry Foundation

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference120 articles.

1. Loss of recent memory after bilateral hippocampal lesions;Scoville;J. Neurol. Neurosurg. Psychiatr.,1957

2. The medial temporal lobe;Squire;Annu. Rev. Neurosci.,2004

3. A theory of hippocampal function in memory;Rolls;Hippocampus,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3