Automatic classification of idiopathic Parkinson’s disease and atypical Parkinsonian syndromes combining [11C]raclopride PET uptake and MRI grey matter morphometry

Author:

Martins RicardoORCID,Oliveira FranciscoORCID,Moreira FradiqueORCID,Moreira Ana PaulaORCID,Abrunhosa AnteroORCID,Januário CristinaORCID,Castelo-Branco MiguelORCID

Abstract

Abstract Objective. To explore the viability of developing a computer-aided diagnostic system for Parkinsonian syndromes using dynamic [11C]raclopride positron emission tomography (PET) and T1-weighted magnetic resonance imaging (MRI) data. Approach. The biological heterogeneity of Parkinsonian syndromes renders their statistical classification a challenge. The unique combination of structural and molecular imaging data allowed different classifier designs to be tested. Datasets from dynamic [11C]raclopride PET and T1-weighted MRI scans were acquired from six groups of participants. There were healthy controls (CTRL n = 15), patients with Parkinson’s disease (PD n = 27), multiple system atrophy (MSA n = 8), corticobasal degeneration (CBD n = 6), and dementia with Lewy bodies (DLB n = 5). MSA, CBD, and DLB patients were classified into one category designated as atypical Parkinsonism (AP). The distribution volume ratio (DVR) kinetic parameters obtained from the PET data were used to quantify the reversible tracer binding to D2/D3 receptors in the subcortical regions of interest (ROI). The grey matter (GM) volumes obtained from the MRI data were used to quantify GM atrophy across cortical, subcortical, and cerebellar ROI. Results. The classifiers CTRL vs PD and CTRL vs AP achieved the highest balanced accuracy combining DVR and GM (DVR-GM) features (96.7%, 92.1%, respectively), followed by the classifiers designed with DVR features (93.3%, 88.8%, respectively), and GM features (69.6%, 86.1%, respectively). In contrast, the classifier PD vs AP showed the highest balanced accuracy (78.9%) using DVR features only. The integration of DVR-GM (77.9%) and GM features (72.7%) produced inferior performances. The classifier CTRL vs PD vs AP showed high weighted balanced accuracy when DVR (80.5%) or DVR-GM features (79.9%) were integrated. GM features revealed poorer performance (59.5%). Significance. This work was unique in its combination of structural and molecular imaging features in binary and triple category classifications. We were able to demonstrate improved binary classification of healthy/diseased status (concerning both PD and AP) and equate performance to DVR features in multiclass classifications.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3