Waveform feature extraction and signal recovery in single-channel TVEP based on Fitzhugh–Nagumo stochastic resonance

Author:

Chen RuiquanORCID,Xu GuanghuaORCID,Zheng YangORCID,Yao PulinORCID,Zhang Sicong,Yan Li,Zhang KaiORCID

Abstract

Abstract Objective. Transient visual evoked potential (TVEP) can reflect the condition of the visual pathway and has been widely used in brain–computer interface. TVEP signals are typically obtained by averaging the time-locked brain responses across dozens or even hundreds of stimulations, in order to remove different kinds of interferences. However, this procedure increases the time needed to detect the brain status in realistic applications. Meanwhile, long repeated stimuli can vary the evoked potentials and discomfort the subjects. Therefore, a novel unsupervised framework was developed in this study to realize the fast extraction of single-channel TVEP signals with a high signal-to-noise ratio. Approach. Using the principle of nonlinear aperiodic FitzHugh–Nagumo (FHN) model, a fast extraction and signal restoration technology of TVEP waveform based on FHN stochastic resonance is proposed to achieve high-quality acquisition of signal features with less average times. Results: A synergistic effect produced by noise, aperiodic signal and nonlinear system can force the energy of noise to be transferred into TVEP and hence amplifying the useful P100 feature while suppressing multi-scale noise. Significance. Compared with the conventional average and average-singular spectrum analysis-independent component analysis(average-SSA-ICA) method, the average-FHN method has a shorter stimulation time which can greatly improve the comfort of patients in clinical TVEP detection and a better performance of TVEP waveform i.e. a higher accuracy of P100 latency. The FHN recovery method is not only highly correlated with the original signal, but also can better highlight the P100 amplitude, which has high clinical application value.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3