EEG-based detection of modality-specific visual and auditory sensory processing

Author:

Massaeli FaghiheORCID,Bagheri Mohammad,Power Sarah DORCID

Abstract

Abstract Objective. A passive brain–computer interface (pBCI) is a system that enhances a human–machine interaction by monitoring the mental state of the user and, based on this implicit information, making appropriate modifications to the interaction. Key to the development of such a system is the ability to reliably detect the mental state of interest via neural signals. Many different mental states have been investigated, including fatigue, attention and various emotions, however one of the most commonly studied states is mental workload, i.e. the amount of attentional resources required to perform a task. The emphasis of mental workload studies to date has been almost exclusively on detecting and predicting the ‘level’ of cognitive resources required (e.g. high vs. low), but we argue that having information regarding the specific ‘type’ of resources (e.g. visual or auditory) would allow the pBCI to apply more suitable adaption techniques than would be possible knowing just the overall workload level. Approach. 15 participants performed carefully designed visual and auditory tasks while electroencephalography (EEG) data was recorded. The tasks were designed to be as similar as possible to one another except for the type of attentional resources required. The tasks were performed at two different levels of demand. Using traditional machine learning algorithms, we investigated, firstly, if EEG can be used to distinguish between auditory and visual processing tasks and, secondly, what effect level of sensory processing demand has on the ability to distinguish between auditory and visual processing tasks. Main results. The results show that at the high level of demand, the auditory vs. visual processing tasks could be distinguished with an accuracy of 77.1% on average. However, in the low demand condition in this experiment, the tasks were not classified with an accuracy exceeding chance. Significance. These results support the feasibility of developing a pBCI for detecting not only the level, but also the type, of attentional resources being required of the user at a given time. Further research is required to determine if there is a threshold of demand under which the type of sensory processing cannot be detected, but even if that is the case, these results are still promising since it is the high end of demand that is of most concern in safety critical scenarios. Such a BCI could help improve safety in high risk occupations by initiating the most effective and efficient possible adaptation strategies when high workload conditions are detected.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference53 articles.

1. Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general;Zander;J. Neural Eng.,2011

2. A real-time wireless brain–computer interface system for drowsiness detection;Lin;IEEE Trans. Biomed. Circuits Syst.,2010

3. Passive BCI based on drowsiness detection: an fNIRS study;Khan;Biomed. Opt. Express,2015

4. Efficient workload classification based on ignored auditory probes: a proof of concept;Roy;Front. Hum. Neurosci.,2016

5. Mental workload evaluation of ATCOs during ecological ATM scenarios;Di Flumeri;Ital. J. Aerosp. Med.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3