Abstract
Abstract
Objective. A passive brain–computer interface (pBCI) is a system that enhances a human–machine interaction by monitoring the mental state of the user and, based on this implicit information, making appropriate modifications to the interaction. Key to the development of such a system is the ability to reliably detect the mental state of interest via neural signals. Many different mental states have been investigated, including fatigue, attention and various emotions, however one of the most commonly studied states is mental workload, i.e. the amount of attentional resources required to perform a task. The emphasis of mental workload studies to date has been almost exclusively on detecting and predicting the ‘level’ of cognitive resources required (e.g. high vs. low), but we argue that having information regarding the specific ‘type’ of resources (e.g. visual or auditory) would allow the pBCI to apply more suitable adaption techniques than would be possible knowing just the overall workload level. Approach. 15 participants performed carefully designed visual and auditory tasks while electroencephalography (EEG) data was recorded. The tasks were designed to be as similar as possible to one another except for the type of attentional resources required. The tasks were performed at two different levels of demand. Using traditional machine learning algorithms, we investigated, firstly, if EEG can be used to distinguish between auditory and visual processing tasks and, secondly, what effect level of sensory processing demand has on the ability to distinguish between auditory and visual processing tasks. Main results. The results show that at the high level of demand, the auditory vs. visual processing tasks could be distinguished with an accuracy of 77.1% on average. However, in the low demand condition in this experiment, the tasks were not classified with an accuracy exceeding chance. Significance. These results support the feasibility of developing a pBCI for detecting not only the level, but also the type, of attentional resources being required of the user at a given time. Further research is required to determine if there is a threshold of demand under which the type of sensory processing cannot be detected, but even if that is the case, these results are still promising since it is the high end of demand that is of most concern in safety critical scenarios. Such a BCI could help improve safety in high risk occupations by initiating the most effective and efficient possible adaptation strategies when high workload conditions are detected.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献