Explainable cross-task adaptive transfer learning for motor imagery EEG classification

Author:

Miao MinminORCID,Yang Zhong,Zeng HongORCID,Zhang Wenbin,Xu BaoguoORCID,Hu Wenjun

Abstract

Abstract Objective. In the field of motor imagery (MI) electroencephalography (EEG)-based brain-computer interfaces, deep transfer learning (TL) has proven to be an effective tool for solving the problem of limited availability in subject-specific data for the training of robust deep learning (DL) models. Although considerable progress has been made in the cross-subject/session and cross-device scenarios, the more challenging problem of cross-task deep TL remains largely unexplored. Approach. We propose a novel explainable cross-task adaptive TL method for MI EEG decoding. Firstly, similarity analysis and data alignment are performed for EEG data of motor execution (ME) and MI tasks. Afterwards, the MI EEG decoding model is obtained via pre-training with extensive ME EEG data and fine-tuning with partial MI EEG data. Finally, expected gradient-based post-hoc explainability analysis is conducted for the visualization of important temporal-spatial features. Main results. Extensive experiments are conducted on one large ME EEG High-Gamma dataset and two large MI EEG datasets (openBMI and GIST). The best average classification accuracy of our method reaches 80.00% and 72.73% for OpenBMI and GIST respectively, which outperforms several state-of-the-art algorithms. In addition, the results of the explainability analysis further validate the correlation between ME and MI EEG data and the effectiveness of ME/MI cross-task adaptation. Significance. This paper confirms that the decoding of MI EEG can be well facilitated by pre-existing ME EEG data, which largely relaxes the constraint of training samples for MI EEG decoding and is important in a practical sense.

Funder

National Natural Science Foundation of China

Basic Research Program of Jiangsu Province of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3