Time-frequency analysis of brain activity in response to directional and non-directional visual stimuli: an event related spectral perturbations (ERSP) study

Author:

Vecchio FabrizioORCID,Nucci LorenzoORCID,Pappalettera ChiaraORCID,Miraglia FrancescaORCID,Iacoviello DanielaORCID,Rossini Paolo MariaORCID

Abstract

Abstract Objective. A large part of the cerebral cortex is dedicated to the processing of visual stimuli and there is still much to understand about such processing modalities and hierarchies. The main aim of the present study is to investigate the differences between directional visual stimuli (DS) and non-directional visual stimuli (n-DS) processing by time-frequency analysis of brain electroencephalographic activity during a visuo-motor task. Electroencephalography (EEG) data were divided into four regions of interest (ROIs) (frontal, central, parietal, occipital). Approach. The analysis of the visual stimuli processing was based on the combination of electroencephalographic recordings and time-frequency analysis. Event related spectral perturbations (ERSPs) were computed with spectrum analysis that allow to obtain the average time course of relative changes induced by the stimulus presentation in spontaneous EEG amplitude spectrum. Main results. Visual stimuli processing enhanced the same pattern of spectral modulation in all investigated ROIs with differences in amplitudes and timing. Additionally, statistically significant differences in occipital ROI between the DS and n-DS visual stimuli processing in theta, alpha and beta bands were found. Significance. These evidences suggest that ERSPs could be a useful tool to investigate the encoding of visual information in different brain regions. Because of their simplicity and their capability in the representation of brain activity, the ERSPs might be used as biomarkers of functional recovery for example in the rehabilitation of visual dysfunction and motor impairment following a stroke, as well as diagnostic tool of anomalies in brain functions in neurological diseases tailored to personalized treatments in clinical environment.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3