Towards decoding selective attention through cochlear implant electrodes as sensors in subjects with contralateral acoustic hearing

Author:

Aldag NinaORCID,Büchner Andreas,Lenarz ThomasORCID,Nogueira WaldoORCID

Abstract

Abstract Objectives. Focusing attention on one speaker in a situation with multiple background speakers or noise is referred to as auditory selective attention. Decoding selective attention is an interesting line of research with respect to future brain-guided hearing aids or cochlear implants (CIs) that are designed to adaptively adjust sound processing through cortical feedback loops. This study investigates the feasibility of using the electrodes and backward telemetry of a CI to record electroencephalography (EEG). Approach. The study population included six normal-hearing (NH) listeners and five CI users with contralateral acoustic hearing. Cortical auditory evoked potentials (CAEP) and selective attention were recorded using a state-of-the-art high-density scalp EEG and, in the case of CI users, also using two CI electrodes as sensors in combination with the backward telemetry system of these devices, denoted as implant-based EEG (iEEG). Main results. In the selective attention paradigm with multi-channel scalp EEG the mean decoding accuracy across subjects was 94.8% and 94.6% for NH listeners and CI users, respectively. With single-channel scalp EEG the accuracy dropped but was above chance level in 8–9 out of 11 subjects, depending on the electrode montage. With the single-channel iEEG, the selective attention decoding accuracy could only be analyzed in two out of five CI users due to a loss of data in the other three subjects. In these two CI users, the selective attention decoding accuracy was above chance level. Significance. This study shows that single-channel EEG is suitable for auditory selective attention decoding, even though it reduces the decoding quality compared to a multi-channel approach. CI-based iEEG can be used for the purpose of recording CAEPs and decoding selective attention. However, the study also points out the need for further technical development for the CI backward telemetry regarding long-term recordings and the optimal sensor positions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3