Predicting task performance from biomarkers of mental fatigue in global brain activity

Author:

Yao LinORCID,Baker Jonathan L,Schiff Nicholas D,Purpura Keith P,Shoaran MahsaORCID

Abstract

Abstract Objective. Detection and early prediction of mental fatigue (i.e. shifts in vigilance), could be used to adapt neuromodulation strategies to effectively treat patients suffering from brain injury and other indications with prominent chronic mental fatigue. Approach. In this study, we analyzed electrocorticography (ECoG) signals chronically recorded from two healthy non-human primates (NHP) as they performed a sustained attention task over extended periods of time. We employed a set of spectrotemporal and connectivity biomarkers of the ECoG signals to identify periods of mental fatigue and a gradient boosting classifier to predict performance, up to several seconds prior to the behavioral response. Main results. Wavelet entropy and the instantaneous amplitude and frequency were among the best single features across sessions in both NHPs. The classification performance using higher order spectral-temporal (HOST) features was significantly higher than that of conventional spectral power features in both NHPs. Across the 99 sessions analyzed, average F1 scores of 77.5% ± 8.2% and 91.2% ± 3.6%, and accuracy of 79.5% ± 8.9% and 87.6% ± 3.9% for the classifier were obtained for each animal, respectively. Significance. Our results here demonstrate the feasibility of predicting performance and detecting periods of mental fatigue by analyzing ECoG signals, and that this general approach, in principle, could be used for closed-loop control of neuromodulation strategies.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3