Simultaneous decoding of cardiovascular and respiratory functional changes from pig intraneural vagus nerve signals

Author:

Vallone FabioORCID,Ottaviani Matteo MariaORCID,Dedola Francesca,Cutrone Annarita,Romeni Simone,Panarese Adele Macrí,Bernini Fabio,Cracchiolo Marina,Strauss IvoORCID,Gabisonia Khatia,Gorgodze Nikoloz,Mazzoni AlbertoORCID,Recchia Fabio A,Micera Silvestro

Abstract

Abstract Objective. Bioelectronic medicine is opening new perspectives for the treatment of some major chronic diseases through the physical modulation of autonomic nervous system activity. Being the main peripheral route for electrical signals between central nervous system and visceral organs, the vagus nerve (VN) is one of the most promising targets. Closed-loop VN stimulation (VNS) would be crucial to increase effectiveness of this approach. Therefore, the extrapolation of useful physiological information from VN electrical activity would represent an invaluable source for single-target applications. Here, we present an advanced decoding algorithm novel to VN studies and properly detecting different functional changes from VN signals. Approach. VN signals were recorded using intraneural electrodes in anaesthetized pigs during cardiovascular and respiratory challenges mimicking increases in arterial blood pressure, tidal volume and respiratory rate. We developed a decoding algorithm that combines discrete wavelet transformation, principal component analysis, and ensemble learning made of classification trees. Main results. The new decoding algorithm robustly achieved high accuracy levels in identifying different functional changes and discriminating among them. Interestingly our findings suggest that electrodes positioning plays an important role on decoding performances. We also introduced a new index for the characterization of recording and decoding performance of neural interfaces. Finally, by combining an anatomically validated hybrid neural model and discrimination analysis, we provided new evidence suggesting a functional topographical organization of VN fascicles. Significance. This study represents an important step towards the comprehension of VN signaling, paving the way for the development of effective closed-loop VNS systems.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3