Decision thresholding on fMRI activation maps using the Hilbert–Huang transform

Author:

Kuo Po-Chih,Liou Michelle

Abstract

Abstract Objective. Functional magnetic resonance imaging (fMRI) requires thresholds by which to identify brain regions with significant activation, particularly for experiments involving real-life paradigms. One conventional non-parametric approach to generating surrogate data involves decomposition of the original fMRI time series using the Fourier transform, after which the phase is randomized without altering the magnitude of individual frequency components. However, it has been reported that spontaneous brain signals could be non-stationary, which, if true, could lead to false-positive results. Approach. This paper introduces a randomization procedure based on the Hilbert–Huang transform by which to account for non-stationarity in fMRI time series derived from two fMRI datasets (stationary or non-stationary). The significance of individual voxels was determined by comparing the distribution of empirical data versus a surrogate distribution. Main results. In a comparison with conventional phase-randomization and wavelet-based permutation methods, the proposed method proved highly effective in generating activation maps indicating essential brain regions, while filtering out noise in the white matter. Significance. This work demonstrated the importance of considering the non-stationary nature of fMRI time series when selecting resampling methods by which to probe brain activity or identify functional networks in real-life fMRI experiments. We propose a statistical testing method to deal with the non-stationarity of continuous brain signals.

Funder

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3