Pathway-specific cortico-muscular coherence in proximal-to-distal compensation during fine motor control of finger extension after stroke

Author:

Zhou Sa,Guo Ziqi,Wong Kiufung,Zhu Hanlin,Huang Yanhuan,Hu XiaolingORCID,Zheng Yong-Ping

Abstract

Abstract Objective. Proximal-to-distal compensation is commonly observed in the upper extremity (UE) after a stroke, mainly due to the impaired fine motor control in hand joints. However, little is known about its related neural reorganization. This study investigated the pathway-specific corticomuscular interaction in proximal-to-distal UE compensation during fine motor control of finger extension post-stroke by directed corticomuscular coherence (dCMC). Approach. We recruited 14 chronic stroke participants and 11 unimpaired controls. Electroencephalogram (EEG) from the sensorimotor area was concurrently recorded with electromyography (EMG) from extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI) and biceps brachii (BIC) muscles in both sides of the stroke participants and in the dominant (right) side of the controls during the unilateral isometric finger extension at 20% maximal voluntary contractions. The dCMC was analyzed in descending (EEG → EMG) and ascending pathways (EMG → EEG) via the directed coherence. It was also analyzed in stable (segments with higher EMG stability) and less-stable periods (segments with lower EMG stability) subdivided from the whole movement period to investigate the fine motor control. Finally, the corticomuscular conduction time was estimated by dCMC phase delay. Main results. The affected limb had significantly lower descending dCMC in distal UE (ED and FD) than BIC (P < 0.05). It showed the descending dominance (significantly higher descending dCMC than the ascending, P < 0.05) in proximal UE (BIC and TRI) rather than the distal UE as in the controls. In the less-stable period, the affected limb had significantly lower EMG stability but higher ascending dCMC (P < 0.05) in distal UE than the controls. Furthermore, significantly prolonged descending conduction time (∼38.8 ms) was found in ED in the affected limb than the unaffected (∼26.94 ms) and control limbs (∼25.74 ms) (P < 0.05). Significance. The proximal-to-distal UE compensation in fine motor control post-stroke exhibited altered descending dominance from the distal to proximal UE, increased ascending feedbacks from the distal UE for fine motor control, and prolonged descending conduction time in the agonist muscle.

Funder

National Natural Science Foundation of China

Research Grants Council, University Grants Committee

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3