Spike prediction on primary motor cortex from medial prefrontal cortex during task learning

Author:

Wu ShenghuiORCID,Qian Cunle,Shen XiangORCID,Zhang XiangORCID,Huang YifanORCID,Chen ShuhangORCID,Wang YiwenORCID

Abstract

Abstract Objectives. Brain–machine interfaces (BMIs) aim to help people with motor disabilities by interpreting brain signals into motor intentions using advanced signal processing methods. Currently, BMI users require intensive training to perform a pre-defined task, not to mention learning a new task. Thus, it is essential to understand neural information pathways among the cortical areas in task learning to provide principles for designing BMIs with learning abilities. We propose to investigate the relationship between the medial prefrontal cortex (mPFC) and primary motor cortex (M1), which are actively involved in motor control and task learning, and show how information is conveyed in spikes between the two regions on a single-trial basis by computational models. Approach. We are interested in modeling the functional relationship between mPFC and M1 activities during task learning. Six Sprague Dawley rats were trained to learn a new behavioral task. Neural spike data was recorded from mPFC and M1 during learning. We then implement the generalized linear model, the second-order generalized Laguerre–Volterra model, and the staged point-process model to predict M1 spikes from mPFC spikes across multiple days during task learning. The prediction performance is compared across different models or learning stages to reveal the relationship between mPFC and M1 spike activities. Main results. We find that M1 neural spikes can be well predicted from mPFC spikes on the single-trial level, which indicates a highly correlated relationship between mPFC and M1 activities during task learning. By comparing the performance across models, we find that models with higher nonlinear capacity perform significantly better than linear models. This indicates that predicting M1 activity from mPFC activity requires the model to consider higher-order nonlinear interactions beyond pairwise interactions. We also find that the correlation coefficient between the mPFC and M1 spikes increases during task learning. The spike prediction models perform the best when the subjects become well trained on the new task compared with the early and middle stages. The results suggest that the co-activation between mPFC and M1 activities evolves during task learning, and becomes stronger as subjects become well trained. Significance. This study demonstrates that the dynamic patterns of M1 spikes can be predicted from mPFC spikes during task learning, and this will further help in the design of adaptive BMI decoders for task learning.

Funder

China Brain Project

National Natural Science Foundation of China

Seed fund of the Big Data for Bio-Intelligence Laboratory from HKUST

special research support from Chao Hoi Shuen Foundation

Innovation and Technology Commission

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3