Multi-task learning for arousal and sleep stage detection using fully convolutional networks

Author:

Zan HasanORCID,Yildiz Abdulnasır

Abstract

Abstract Objective. Sleep is a critical physiological process that plays a vital role in maintaining physical and mental health. Accurate detection of arousals and sleep stages is essential for the diagnosis of sleep disorders, as frequent and excessive occurrences of arousals disrupt sleep stage patterns and lead to poor sleep quality, negatively impacting physical and mental health. Polysomnography is a traditional method for arousal and sleep stage detection that is time-consuming and prone to high variability among experts. Approach. In this paper, we propose a novel multi-task learning approach for arousal and sleep stage detection using fully convolutional neural networks. Our model, FullSleepNet, accepts a full-night single-channel EEG signal as input and produces segmentation masks for arousal and sleep stage labels. FullSleepNet comprises four modules: a convolutional module to extract local features, a recurrent module to capture long-range dependencies, an attention mechanism to focus on relevant parts of the input, and a segmentation module to output final predictions. Main results. By unifying the two interrelated tasks as segmentation problems and employing a multi-task learning approach, FullSleepNet achieves state-of-the-art performance for arousal detection with an area under the precision-recall curve of 0.70 on Sleep Heart Health Study and Multi-Ethnic Study of Atherosclerosis datasets. For sleep stage classification, FullSleepNet obtains comparable performance on both datasets, achieving an accuracy of 0.88 and an F1-score of 0.80 on the former and an accuracy of 0.83 and an F1-score of 0.76 on the latter. Significance. Our results demonstrate that FullSleepNet offers improved practicality, efficiency, and accuracy for the detection of arousal and classification of sleep stages using raw EEG signals as input.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference77 articles.

1. An official American Thoracic Society statement: the importance of healthy sleep. recommendations and future priorities;Mukherjee;Am. J. Respir. Crit. Care Med.,2018

2. Sleep deprivation in critical illness;Kamdar;J. Intensive Care Med.,2012

3. Rem And Nrem sleep mentation;McNamara;Int. Rev. Neurobiol.,2010

4. Sleep and sleep disorders in menopausal women;Guidozzi;Climacteric,2013

5. The nature of arousal in sleep;Halasz;J. Sleep Res.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3