Epidural recordings in cochlear implant users

Author:

Haumann SORCID,Bauernfeind GORCID,Teschner M J,Schierholz I,Bleichner M G,Büchner A,Lenarz T

Abstract

Abstract Objective. In the long term it is desirable for CI users to control their device via brain signals. A possible strategy is the use of auditory evoked potentials (AEPs). Several studies have shown the suitability of auditory paradigms for such an approach. However, these investigations are based on non-invasive recordings. When thinking about everyday life applications, it would be more convenient to use implanted electrodes for signal acquisition. Ideally, the electrodes would be directly integrated into the CI. Further it is to be expected that invasively recorded signals have higher signal quality and are less affected by artifacts. Approach. In this project we investigated the feasibility of implanting epidural electrodes temporarily during CI surgery and the possibility to record AEPs in the course of several days after implantation. Intraoperatively, auditory brainstem responses were recorded, whereas various kinds of AEPs were recorded postoperatively. After a few days the epidural electrodes were removed. Main results. Data sets of ten subjects were obtained. Invasively recorded potentials were compared subjectively and objectively to clinical standard recordings using surface electrodes. Especially the cortical evoked response audiometry depicted clearer N1 waves for the epidural electrodes which were also visible at lower stimulation intensities compared to scalp electrodes. Furthermore the signal was less disturbed by artifacts. The objective quality measure (based on data sets of six patients) showed a significant better signal quality for the epidural compared to the scalp recordings. Significance. Altogether the approach revealed to be feasible and well tolerated by the patients. The epidural recordings showed a clearly better signal quality than the scalp recordings with AEPs being clearer recognizable. The results of the present study suggest that including epidural recording electrodes in future CI systems will improve the everyday life applicability of auditory closed loop systems for CI subjects.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference46 articles.

1. Technical advancements in cochlear implants: state of the art;Büchner;HNO,2017

2. Cochlear implant—state of the art.;Lenarz;GMS. Curr. Top Otorhinolaryngol. Head Neck Surg.,2017

3. Signal-processing techniques for cochlear implants;Loizou;IEEE Eng. Med. Biol. Mag.,1999

4. Cochlear implants: a remarkable past and a brilliant future;Wilson;Hear. Res.,2008

5. Evaluation of advanced bionics high resolution mode;Büchner;Int. J. Audiol.,2006

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3