Transcranial dipole localization and decoding study based on ultrasonic phased array for acoustoelectric brain imaging

Author:

Zhang HaoORCID,Zhang YanqiuORCID,Wang XueORCID,Chen Guowei,Jian Xiqi,Xu Minpeng,Ming Dong

Abstract

Abstract Objective. Neuroimaging is one of the effective tools to understand the functional activities of the brain, but traditional non-invasive neuroimaging techniques are difficult to combine both high temporal and spatial resolution to satisfy clinical needs. Acoustoelectric brain imaging (ABI) can combine the millimeter spatial resolution advantage of focused ultrasound with the millisecond temporal resolution advantage of electroencephalogram signals. Approach. In this study, we first explored the transcranial modulated acoustic field distribution based on ABI, and further localized and decoded single and double dipoles signals. Main results. The results show that the simulation-guided acoustic field modulation results are significantly better than those of self-focusing, which can realize precise modulation focusing of intracranial target focusing. The single dipole transcranial localization error is less than 0.4 mm and the decoding accuracy is greater than 0.93. The double dipoles transcranial localization error is less than 0.2 mm and the decoding accuracy is greater than 0.89. Significance. This study enables precise focusing of transcranial acoustic field modulation, high-precision localization of source signals and decoding of their waveforms, which provides a technical method for ABI in localizing evoked excitatory neuron areas and epileptic focus.

Funder

New High School

Research Program Project of Tianjin Municipal Education

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synchronous Mapping of Neural Current Source and Sulcus With Acoustoelectric Brain Imaging;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3