Improving automated diagnosis of epilepsy from EEGs beyond IEDs

Author:

Thangavel PrasanthORCID,Thomas JohnORCID,Sinha NishantORCID,Peh Wei Yan,Yuvaraj RajamanickamORCID,Cash Sydney S,Chaudhari Rima,Karia Sagar,Jing Jin,Rathakrishnan RahulORCID,Saini Vinay,Shah Nilesh,Srivastava RohitORCID,Tan Yee-Leng,Westover Brandon,Dauwels Justin

Abstract

Abstract Objective. Clinical diagnosis of epilepsy relies partially on identifying interictal epileptiform discharges (IEDs) in scalp electroencephalograms (EEGs). This process is expert-biased, tedious, and can delay the diagnosis procedure. Beyond automatically detecting IEDs, there are far fewer studies on automated methods to differentiate epileptic EEGs (potentially without IEDs) from normal EEGs. In addition, the diagnosis of epilepsy based on a single EEG tends to be low. Consequently, there is a strong need for automated systems for EEG interpretation. Traditionally, epilepsy diagnosis relies heavily on IEDs. However, since not all epileptic EEGs exhibit IEDs, it is essential to explore IED-independent EEG measures for epilepsy diagnosis. The main objective is to develop an automated system for detecting epileptic EEGs, both with or without IEDs. In order to detect epileptic EEGs without IEDs, it is crucial to include EEG features in the algorithm that are not directly related to IEDs. Approach. In this study, we explore the background characteristics of interictal EEG for automated and more reliable diagnosis of epilepsy. Specifically, we investigate features based on univariate temporal measures (UTMs), spectral, wavelet, Stockwell, connectivity, and graph metrics of EEGs, besides patient-related information (age and vigilance state). The evaluation is performed on a sizeable cohort of routine scalp EEGs (685 epileptic EEGs and 1229 normal EEGs) from five centers across Singapore, USA, and India. Main results. In comparison with the current literature, we obtained an improved Leave-One-Subject-Out (LOSO) cross-validation (CV) area under the curve (AUC) of 0.871 (Balanced Accuracy (BAC) of 80.9%) with a combination of three features (IED rate, and Daubechies and Morlet wavelets) for the classification of EEGs with IEDs vs. normal EEGs. The IED-independent feature UTM achieved a LOSO CV AUC of 0.809 (BAC of 74.4%). The inclusion of IED-independent features also helps to improve the EEG-level classification of epileptic EEGs with and without IEDs vs. normal EEGs, achieving an AUC of 0.822 (BAC of 77.6%) compared to 0.688 (BAC of 59.6%) for classification only based on the IED rate. Specifically, the addition of IED-independent features improved the BAC by 21% in detecting epileptic EEGs that do not contain IEDs. Significance. These results pave the way towards automated detection of epilepsy. We are one of the first to analyze epileptic EEGs without IEDs, thereby opening up an underexplored option in epilepsy diagnosis.

Funder

National Health Innovation Centre (NHIC) grant

Ministry of Education (MoE), Singapore

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3