Gaze-contingent processing improves mobility, scene recognition and visual search in simulated head-steered prosthetic vision

Author:

de Ruyter van Steveninck JaapORCID,Nipshagen Mo,van Gerven Marcel,Güçlü Umut,Güçlüturk Yağmur,van Wezel Richard

Abstract

Abstract Objective. The enabling technology of visual prosthetics for the blind is making rapid progress. However, there are still uncertainties regarding the functional outcomes, which can depend on many design choices in the development. In visual prostheses with a head-mounted camera, a particularly challenging question is how to deal with the gaze-locked visual percept associated with spatial updating conflicts in the brain. The current study investigates a recently proposed compensation strategy based on gaze-contingent image processing with eye-tracking. Gaze-contingent processing is expected to reinforce natural-like visual scanning and reestablished spatial updating based on eye movements. The beneficial effects remain to be investigated for daily life activities in complex visual environments. Approach. The current study evaluates the benefits of gaze-contingent processing versus gaze-locked and gaze-ignored simulations in the context of mobility, scene recognition and visual search, using a virtual reality simulated prosthetic vision paradigm with sighted subjects. Main results. Compared to gaze-locked vision, gaze-contingent processing was consistently found to improve the speed in all experimental tasks, as well as the subjective quality of vision. Similar or further improvements were found in a control condition that ignores gaze-dependent effects, a simulation that is unattainable in the clinical reality. Significance. Our results suggest that gaze-locked vision and spatial updating conflicts can be debilitating for complex visually-guided activities of daily living such as mobility and orientation. Therefore, for prospective users of head-steered prostheses with an unimpaired oculomotor system, the inclusion of a compensatory eye-tracking system is strongly endorsed.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3