Multi-scale modelling of the epileptic brain: advantages of computational therapy exploration

Author:

Hong Rongqi,Zheng Tingting,Marra Vincenzo,Yang DongpingORCID,Liu Jian K

Abstract

Abstract Objective: Epilepsy is a complex disease spanning across multiple scales, from ion channels in neurons to neuronal circuits across the entire brain. Over the past decades, computational models have been used to describe the pathophysiological activity of the epileptic brain from different aspects. Traditionally, each computational model can aid in optimizing therapeutic interventions, therefore, providing a particular view to design strategies for treating epilepsy. As a result, most studies are concerned with generating specific models of the epileptic brain that can help us understand the certain machinery of the pathological state. Those specific models vary in complexity and biological accuracy, with system-level models often lacking biological details. Approach: Here, we review various types of computational model of epilepsy and discuss their potential for different therapeutic approaches and scenarios, including drug discovery, surgical strategies, brain stimulation, and seizure prediction. We propose that we need to consider an integrated approach with a unified modelling framework across multiple scales to understand the epileptic brain. Our proposal is based on the recent increase in computational power, which has opened up the possibility of unifying those specific epileptic models into simulations with an unprecedented level of detail. Main results: A multi-scale epilepsy model can bridge the gap between biologically detailed models, used to address molecular and cellular questions, and brain-wide models based on abstract models which can account for complex neurological and behavioural observations. Significance: With these efforts, we move toward the next generation of epileptic brain models capable of connecting cellular features, such as ion channel properties, with standard clinical measures such as seizure severity.

Funder

Major Research Plan

Natural Science Foundation of Zhejiang Province

Publisher

IOP Publishing

Reference133 articles.

1. Epilepsy;Devinsky;Nat. Rev. Dis. Primers,2018

2. Atlas: epilepsy care in the world;W. H. Organization, G. C. against Epilepsy, P. for Neurological Diseases, N. W. H. Organization, I. B. for Epilepsy, W. H. O. D. of Mental Health, S. Abuse, I. B. of Epilepsy, and I. L. against Epilepsy,2005

3. Molecular mechanisms of epilepsy;Staley;Nat. Neurosci.,2015

4. Epilepsy: a review of selected clinical syndromes and advances in basic science;Stafstrom;J. Cereb. Blood Flow Metab.,2006

5. Development of new antiepileptic drugs: challenges, incentives and recent advances;Perucca;Lancet Neurol.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3