Emotion recognition using spatial-temporal EEG features through convolutional graph attention network

Author:

Li ZhongjieORCID,Zhang GaoyanORCID,Wang Longbiao,Wei Jianguo,Dang Jianwu

Abstract

Abstract Objective. Constructing an efficient human emotion recognition model based on electroencephalogram (EEG) signals is significant for realizing emotional brain–computer interaction and improving machine intelligence. Approach. In this paper, we present a spatial-temporal feature fused convolutional graph attention network (STFCGAT) model based on multi-channel EEG signals for human emotion recognition. First, we combined the single-channel differential entropy (DE) feature with the cross-channel functional connectivity (FC) feature to extract both the temporal variation and spatial topological information of EEG. After that, a novel convolutional graph attention network was used to fuse the DE and FC features and further extract higher-level graph structural information with sufficient expressive power for emotion recognition. Furthermore, we introduced a multi-headed attention mechanism in graph neural networks to improve the generalization ability of the model. Main results. We evaluated the emotion recognition performance of our proposed model on the public SEED and DEAP datasets, which achieved a classification accuracy of 99.11% ± 0.83% and 94.83% ± 3.41% in the subject-dependent and subject-independent experiments on the SEED dataset, and achieved an accuracy of 91.19% ± 1.24% and 92.03% ± 4.57% for discrimination of arousal and valence in subject-independent experiments on DEAP dataset. Notably, our model achieved state-of-the-art performance on cross-subject emotion recognition tasks for both datasets. In addition, we gained insight into the proposed frame through both the ablation experiments and the analysis of spatial patterns of FC and DE features. Significance. All these results prove the effectiveness of the STFCGAT architecture for emotion recognition and also indicate that there are significant differences in the spatial-temporal characteristics of the brain under different emotional states.

Funder

Japan Society for the Promotion of Science

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference59 articles.

1. EEG feature selection using orthogonal regression: application to emotion recognition;Xu,2020

2. Fusion of facial expressions and EEG for multimodal emotion recognition;Huang;Comput. Intell. Neurosci.,2017

3. Evaluating deep learning architectures for speech emotion recognition;Fayek;Neural Netw.,2017

4. Sentiment analysis: detecting valence, emotions and other affectual states from text;Mohammad,2016

5. Multimodal emotion recognition in response to videos;Soleymani;IEEE Trans. Affective Comput.,2011

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3