Spatio-temporal characterization of causal electrophysiological activity stimulated by single pulse focused ultrasound: an ex vivo study on hippocampal brain slices

Author:

Suarez-Castellanos Ivan MORCID,Dossi Elena,Vion-Bailly Jérémy,Salette Léa,Chapelon Jean-Yves,Carpentier Alexandre,Huberfeld Gilles,N’Djin William ApoutouORCID

Abstract

Abstract Objective. The brain operates via generation, transmission and integration of neuronal signals and most neurological disorders are related to perturbation of these processes. Neurostimulation by focused ultrasound (FUS) is a promising technology with potential to rival other clinically used techniques for the investigation of brain function and treatment of numerous neurological diseases. The purpose of this study was to characterize spatial and temporal aspects of causal electrophysiological signals directly stimulated by short, single pulses of FUS on ex vivo mouse hippocampal brain slices. Approach. Microelectrode arrays (MEAs) are used to study the spatio-temporal dynamics of extracellular neuronal activities both at the single neuron and neural networks scales. Hence, MEAs provide an excellent platform for characterization of electrical activity generated, modulated and transmitted in response to FUS exposure. In this study, a novel mixed FUS/MEA platform was designed for the spatio-temporal description of the causal responses generated by single 1.78 MHz FUS pulses in ex vivo mouse hippocampal brain slices. Main results. Our results show that FUS pulses can generate local field potentials (LFPs), sustained by synchronized neuronal post-synaptic potentials, and reproducing network activities. LFPs induced by FUS stimulation were found to be repeatable to consecutive FUS pulses though exhibiting a wide range of amplitudes (50–600 μV), durations (20–200 ms), and response delays (10–60 ms). Moreover, LFPs were spread across the hippocampal slice following single FUS pulses thus demonstrating that FUS may be capable of stimulating different neural structures within the hippocampus. Significance. Current knowledge on neurostimulation by ultrasound describes neuronal activity generated by trains of repetitive ultrasound pulses. This novel study details the causal neural responses produced by single-pulse FUS neurostimulation while illustrating the distribution and propagation properties of this neural activity along major neural pathways of the hippocampus.

Funder

Laboratory of Excellence

Focused Ultrasound Foundation

Agence Nationale de la Recherche

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3