Closed-loop automated reaching apparatus (CLARA) for interrogating complex motor behaviors

Author:

Bowles SORCID,Williamson W R,Nettles D,Hickman J,Welle C GORCID

Abstract

Abstract Objective. Closed-loop neuromodulation technology is a rapidly expanding category of therapeutics for a broad range of indications. Development of these innovative neurological devices requires high-throughput systems for closed-loop stimulation of model organisms, while monitoring physiological signals and complex, naturalistic behaviors. To address this need, we developed CLARA, a closed-loop automated reaching apparatus. Approach. Using breakthroughs in computer vision, CLARA integrates fully-automated, markerless kinematic tracking of multiple features to classify animal behavior and precisely deliver neural stimulation based on behavioral outcomes. CLARA is compatible with advanced neurophysiological tools, enabling the testing of neurostimulation devices and identification of novel neurological biomarkers. Results. The CLARA system tracks unconstrained skilled reach behavior in 3D at 150 Hz without physical markers. The system fully automates trial initiation and pellet delivery and is capable of accurately delivering stimulation in response to trial outcome with short latency. Kinematic data from the CLARA system provided novel insights into the dynamics of reach consistency over the course of learning, suggesting that learning selectively improves reach failures but does not alter the kinematics of successful reaches. Additionally, using the closed-loop capabilities of CLARA, we demonstrate that vagus nerve stimulation (VNS) improves skilled reach performance and increases reach trajectory consistency in healthy animals. Significance. The CLARA system is the first mouse behavior apparatus that uses markerless pose tracking to provide real-time closed-loop stimulation in response to the outcome of an unconstrained motor task. Additionally, we demonstrate that the CLARA system was essential for our investigating the role of closed-loop VNS stimulation on motor performance in healthy animals. This approach has high translational relevance for developing neurostimulation technology based on complex human behavior.

Funder

Defense Advanced Research Projects Agency

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3