Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study

Author:

Fiocchi SerenaORCID,Chiaramello EmmaORCID,Marrella AlessandraORCID,Bonato MartaORCID,Parazzini MartaORCID,Ravazzani PaoloORCID

Abstract

Abstract Objective. Recently developed magnetoelectric nanoparticles (MENPs) provide a potential tool to enable different biomedical applications. They could be used to overcome the intrinsic constraints posed by traditional neurostimulation techniques, namely the invasiveness of electrodes-based techniques, the limited spatial resolution, and the scarce efficiency of magnetic stimulation. Approach. By using computational electromagnetic techniques, we modelled the behaviour of recently designed biocompatible MENPs injected, in the shape of clusters, in specific cortical targets of a highly detailed anatomical head model. The distributions and the tissue penetration of the electric fields induced by MENPs clusters in each tissue will be compared to the distributions induced by traditional transcranial magnetic stimulation (TMS) coils for non-invasive brain stimulation positioned on the left prefrontal cortex (PFC) of a highly detailed anatomical head model. Main results. MENPs clusters can induce highly focused electric fields with amplitude close to the neural activation threshold in all the brain tissues of interest for the treatment of most neuropsychiatric disorders. Conversely, TMS coils can induce electric fields of several tens of V m−1 over a broad volume of the PFC, but they are unlikely able to efficiently stimulate even small volumes of subcortical and deep tissues. Significance. Our numerical results suggest that the use of MENPs for brain stimulation may potentially led to a future pinpoint treatment of neuropshychiatric disorders, in which an impairment of electric activity of specific cortical and subcortical tissues and networks has been assumed to play a crucial role.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3