Optimizing thermal block length during infrared neural inhibition to minimize temperature thresholds

Author:

Ford Jeremy BORCID,Ganguly MohitORCID,Zhuo JunqiORCID,McPheeters Matthew T,Jenkins Michael WORCID,Chiel Hillel JORCID,Jansen E DucoORCID

Abstract

Abstract Objective. Infrared neural inhibition (INI) is a method of blocking the generation or propagation of neural action potentials through laser heating with wavelengths strongly absorbed by water. Recent work has identified that the distance heated along axons, the block length (BL), modulates the temperature needed for inhibition; however, this relationship has not been characterized. This study explores how BL during INI can be optimized towards minimizing its temperature threshold. Approach. To understand the relationship between BL and the temperature required for INI, excised nerves from Aplysia californica were laser-heated over different lengths of axon during electrical stimulation of compound action potentials. INI was provided by irradiation (λ = 1470 nm) from a custom probe (n = 6 nerves), and subsequent validation was performed by providing heat block using perfused hot media over nerves (n = 5 nerves). Main Results. Two BL regimes were identified. Short BLs (thermal full width at half maximum (tFWHM) = 0.81–1.13 mm) demonstrated that increasing the tFWHM resulted in lower temperature thresholds for INI (p < 0.0125), while longer BLs (tFWHM = 1.13–3.03 mm) showed no significant change between the temperature threshold and tFWHM (p > 0.0125). Validation of this longer regime was performed using perfused hot media over different lengths of nerves. This secondary heating method similarly showed no significant change (p > 0.025) in the temperature threshold (tFWHM = 1.25–4.42 mm). Significance. This work characterized how the temperature threshold for neural heat block varies with BL and identified an optimal BL around tFWHM = 1.13 mm which minimizes both the maximum temperature applied to tissue and the volume of tissue heated during INI. Understanding how to optimally target lengths of nerve to minimize temperature during INI can help inform the design of devices for longitudinal animal studies and human implementation.

Funder

National Institutes of Health/ SPARC

National Heart, Lung, and Blood Institute

American Society for Laser Medicine and Surgery

National Institute of Neurological Disorders and Stroke

Air Force Office of Scientific Research

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3