Physiological synchrony in EEG, electrodermal activity and heart rate reflects shared selective auditory attention

Author:

Stuldreher Ivo VORCID,Thammasan NattapongORCID,van Erp Jan B FORCID,Brouwer Anne-MarieORCID

Abstract

Abstract Objective. Concurrent changes in physiological signals across multiple listeners (physiological synchrony—PS), as caused by shared affective or cognitive processes, may be a suitable marker of selective attentional focus. We aimed to identify the selective attention of participants based on PS with individuals sharing attention with respect to different stimulus aspects. Approach. We determined PS in electroencephalography (EEG), electrodermal activity (EDA) and electrocardiographic inter-beat interval (IBI) of participants who all heard the exact same audio track, but were instructed to either attend to the audiobook or to interspersed auditory events such as affective sounds and beeps that attending participants needed to keep track of. Main results. PS in all three measures reflected the selective attentional focus of participants. In EEG and EDA, PS was higher for participants when linked to participants with the same attentional instructions than when linked to participants instructed to focus on different stimulus aspects, but in IBI this effect did not reach significance. Comparing PS between a participant and members from the same or the different attentional group allowed for the correct identification of the participant’s attentional instruction in 96%, 73% and 73% of the cases, for EEG, EDA and IBI, respectively, all well above chance level. PS with respect to the attentional groups also predicted performance on post-audio questions about the groups’ stimulus content. Significance. Our results show that selective attention of participants can be monitored using PS, not only in EEG, but also in EDA and IBI. These results are promising for real-world applications, where wearables measuring peripheral signals like EDA and IBI may be preferred over EEG sensors.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3