Abstract
Abstract
Objective. A novel angle-tuned ring coil is proposed for improving the depth-spread performance of transcranial magnetic stimulation (TMS) coils and serve as the building blocks for high-performance composite coils and multisite TMS systems. Approach. Improving depth-spread performance by reducing field divergence through creating a more elliptical emitted field distribution from the coil. To accomplish that, instead of enriching the Fourier components along the planarized (x-y) directions, which requires different arrays to occupy large brain surface areas, we worked along the radial (z) direction by using tilted coil angles and stacking coil numbers to reduce the divergence of the emitted near field without occupying large head surface areas. The emitted electric field distributions were theoretically simulated in spherical and real human head models to analyze the depth-spread performance of proposed coils and compare with existing figure-8 coils. The results were then experimentally validated with field probes and in-vivo animal tests. Main results. The proposed ‘angle-tuning’ concept improves the depth-spread performance of individual coils with a significantly smaller footprint than existing and proposed coils. For composite structures, using the proposed coils as basic building blocks simplifies the design and manufacturing process and helps accomplish a leading depth-spread performance. In addition, the footprint of the proposed system is intrinsically small, making them suitable for multisite stimulations of inter and intra-hemispheric brain regions with an improved spread and less electric field divergence. Significance. Few brain functions are operated by isolated single brain regions but rather by coordinated networks involving multiple brain regions. Simultaneous or sequential multisite stimulations may provide tools for mechanistic studies of brain functions and the treatment of neuropsychiatric disorders. The proposed AT coil goes beyond the traditional depth-spread tradeoff rule of TMS coils, which provides the possibility of building new composite structures and new multisite TMS tools.
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Reference60 articles.
1. Repetitive transcranial magnetic stimulation (rTMS) systems—class II special controls guidance for industry and FDA staff;Costello,2011
2. FDA permits marketing of transcranial magnetic stimulation for treatment of obsessive compulsive disorder;Caccomo,2018
3. Transcranial magnetic stimulation: neurophysiological applications and safety;Anand;Brain Cogn.,2002
4. Transcranial magnetic stimulation: basic principles and clinical applications in migraine;Barker;Headache J. Head Face Pain,2017
5. Transcranial magnetic stimulation: applications in basic neuroscience and neuropsychopharmacology;Lisanby;Int. J. Neuropsychopharmacol.,2000
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献