Error-related potential-based shared autonomy via deep recurrent reinforcement learning

Author:

Wang XiaofeiORCID,Chen Hsiang-Ting,Lin Chin-Teng

Abstract

Abstract Objective. Error-related potential (ErrP)-based brain–computer interfaces (BCIs) have received a considerable amount of attention in the human–robot interaction community. In contrast to traditional BCI, which requires continuous and explicit commands from an operator, ErrP-based BCI leverages the ErrP, which is evoked when an operator observes unexpected behaviours from the robot counterpart. This paper proposes a novel shared autonomy model for ErrP-based human–robot interaction. Approach. We incorporate ErrP information provided by a BCI as useful observations for an agent and formulate the shared autonomy problem as a partially observable Markov decision process. A recurrent neural network-based actor-critic model is used to address the uncertainty in the ErrP signal. We evaluate the proposed framework in a simulated human-in-the-loop robot navigation task with both simulated users and real users. Main results. The results show that the proposed ErrP-based shared autonomy model enables an autonomous robot to complete navigation tasks more efficiently. In a simulation with 70% ErrP accuracy, agents completed the task 14.1% faster than in the no ErrP condition, while with real users, agents completed the navigation task 14.9% faster. Significance. The evaluation results confirmed that the shared autonomy via deep recurrent reinforcement learning is an effective way to deal with uncertain human feedback in a complex human–robot interaction task.

Funder

Australia Defence Innovation Hub

AFOSR – DST Australian Autonomy Initiative agreement

NSW Defence Innovation Network and NSW State Government of Australia

Australian Research Council

US Office of Naval Research Global

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3