Abstract
Abstract
Objective. Error-related potential (ErrP)-based brain–computer interfaces (BCIs) have received a considerable amount of attention in the human–robot interaction community. In contrast to traditional BCI, which requires continuous and explicit commands from an operator, ErrP-based BCI leverages the ErrP, which is evoked when an operator observes unexpected behaviours from the robot counterpart. This paper proposes a novel shared autonomy model for ErrP-based human–robot interaction. Approach. We incorporate ErrP information provided by a BCI as useful observations for an agent and formulate the shared autonomy problem as a partially observable Markov decision process. A recurrent neural network-based actor-critic model is used to address the uncertainty in the ErrP signal. We evaluate the proposed framework in a simulated human-in-the-loop robot navigation task with both simulated users and real users. Main results. The results show that the proposed ErrP-based shared autonomy model enables an autonomous robot to complete navigation tasks more efficiently. In a simulation with 70% ErrP accuracy, agents completed the task 14.1% faster than in the no ErrP condition, while with real users, agents completed the navigation task 14.9% faster. Significance. The evaluation results confirmed that the shared autonomy via deep recurrent reinforcement learning is an effective way to deal with uncertain human feedback in a complex human–robot interaction task.
Funder
Australia Defence Innovation Hub
AFOSR – DST Australian Autonomy Initiative agreement
NSW Defence Innovation Network and NSW State Government of Australia
Australian Research Council
US Office of Naval Research Global
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献