Neural tracking to go: auditory attention decoding and saliency detection with mobile EEG

Author:

Straetmans LORCID,Holtze B,Debener S,Jaeger M,Mirkovic BORCID

Abstract

Abstract Objective. Neuro-steered assistive technologies have been suggested to offer a major advancement in future devices like neuro-steered hearing aids. Auditory attention decoding (AAD) methods would in that case allow for identification of an attended speaker within complex auditory environments, exclusively from neural data. Decoding the attended speaker using neural information has so far only been done in controlled laboratory settings. Yet, it is known that ever-present factors like distraction and movement are reflected in the neural signal parameters related to attention. Approach. Thus, in the current study we applied a two-competing speaker paradigm to investigate performance of a commonly applied electroencephalography-based AAD model outside of the laboratory during leisure walking and distraction. Unique environmental sounds were added to the auditory scene and served as distractor events. Main results. The current study shows, for the first time, that the attended speaker can be accurately decoded during natural movement. At a temporal resolution of as short as 5 s and without artifact attenuation, decoding was found to be significantly above chance level. Further, as hypothesized, we found a decrease in attention to the to-be-attended and the to-be-ignored speech stream after the occurrence of a salient event. Additionally, we demonstrate that it is possible to predict neural correlates of distraction with a computational model of auditory saliency based on acoustic features. Significance. Taken together, our study shows that auditory attention tracking outside of the laboratory in ecologically valid conditions is feasible and a step towards the development of future neural-steered hearing aids.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3