Layer-specific parameters of intracortical microstimulation of the somatosensory cortex

Author:

Urdaneta Morgan EORCID,Kunigk Nicolas G,Delgado Francisco,Fried Shelley I,Otto Kevin JORCID

Abstract

Abstract Objective. Intracortical microstimulation of the primary somatosensory cortex (S1) has shown great progress in restoring touch sensations to patients with paralysis. Stimulation parameters such as amplitude, phase duration, and frequency can influence the quality of the evoked percept as well as the amount of charge necessary to elicit a response. Previous studies in V1 and auditory cortices have shown that the behavioral responses to stimulation amplitude and phase duration change across cortical depth. However, this depth-dependent response has yet to be investigated in S1. Similarly, to our knowledge, the response to microstimulation frequency across cortical depth remains unexplored. Approach. To assess these questions, we implanted rats in S1 with a microelectrode with electrode-sites spanning all layers of the cortex. A conditioned avoidance behavioral paradigm was used to measure detection thresholds and responses to phase duration and frequency across cortical depth. Main results. Analogous to other cortical areas, the sensitivity to charge and strength–duration chronaxies in S1 varied across cortical layers. Likewise, the sensitivity to microstimulation frequency was layer dependent. Significance. These findings suggest that cortical depth can play an important role in the fine-tuning of stimulation parameters and in the design of intracortical neuroprostheses for clinical applications.

Funder

National Institutes of Health

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3