Neuromodulation using electroosmosis

Author:

Kare Sai SivaORCID,Rountree Corey MORCID,Troy John BORCID,Finan John DORCID,Saggere LaxmanORCID

Abstract

Abstract Objective. Our laboratory has proposed chemical stimulation of retinal neurons using exogenous glutamate as a biomimetic strategy for treating vision loss caused by photoreceptor (PR) degenerative diseases. Although our previous in-vitro studies using pneumatic actuation indicate that chemical retinal stimulation is achievable, an actuation technology that is amenable to microfabrication, as needed for an in-vivo implantable device, has yet to be realized. In this study, we sought to evaluate electroosmotic flow (EOF) as a mechanism for delivering small quantities of glutamate to the retina. EOF has great potential for miniaturization. Approach. An EOF device to dispense small quantities of glutamate was constructed and its ability to drive retinal output tested in an in-vitro preparation of PR degenerate rat retina. Main results. We built and tested an EOF microfluidic system, with 3D printed and off-the-shelf components, capable of injecting small volumes of glutamate in a pulsatile fashion when a low voltage control signal was applied. With this device, we produced excitatory and inhibitory spike rate responses in PR degenerate rat retinae. Glutamate evoked spike rate responses were also observed to be voltage-dependent and localized to the site of injection. Significance. The EOF device performed similarly to a previously tested conventional pneumatic microinjector as a means of chemically stimulating the retina while eliminating the moving plunger of the pneumatic microinjector that would be difficult to miniaturize and parallelize. Although not implantable, the prototype device presented here as a proof of concept indicates that a retinal prosthetic based on EOF-driven chemical stimulation is a viable and worthwhile goal. EOF should have similar advantages for controlled dispensing of charged neurochemicals at any neural interface.

Funder

National Institute of Biomedical Imaging and Bioengineering

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference63 articles.

1. Global estimates of visual impairment: 2010;Pascolini;Br. J. Ophthalmol.,2012

2. Age-related macular degeneration: genetics and biology coming together;Fritsche;Annu. Rev. Genomics Hum. Genet.,2014

3. Retinal implants: a systematic review;Chuang;Br. J. Ophthalmol.,2014

4. Ultrasonic retinal neuromodulation and acoustic retinal prosthesis;Lo;Micromachines,2020

5. Mechanical stimulation of the retina: therapeutic feasibility and cellular mechanism;Rountree;IEEE Trans. Neural. Syst. Rehabil. Eng.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3